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Il INTRODUCTION

A reactor core emits radiations, mainly gamma ray and neutron flux,
in all directions. A portion of these radiations and their secondary
emissions would reach the outside of the reactor vessel and become hazard-
ous to the surrounding and reactor personnel. In order to minimize the
radiation effects from undue exposure, it is necessary to enclose the re-
actor core with suitable shieldings.

In most thermal reactors, ‘the basic neutron flux distribution is
generally confined in the core and reflector. The bulk of shielding prob-
lem is that of gamma attenuation.

Photon interactions with matter can be classified into many types of
reactions. In shielding studies, only three types of gamma interactions
wi th matter need to be considered. They are the photoelectric effect,
Compton scattering and electron-positron pair production. Gamma attenua-
tion involving only photoelectric and pair production effect can be
considered as absorption processes and thus can be described accurately
by an exponentially decreasing relation. However, in energy region around
1 Mev, Compton scattering is the dominant process among the three. Compton
scattering gives rise to secondary photons; hence a correction factor must
be applied to the exponentially decreasing relation of gamma attenuation.
This correction factor, known as the buildup factor, is therefore an
important parameter for shielding studies.

Buildup factors have been calculated by the moments method for

infinite homogeneous media. However, since reactor shields are finite,



heterogeneous media, the moments method is not directly applicable. Build-
up factors have also been calculated by Monte Carlo methods. By

their very nature of random sampling, the computer time required by Monte
Carlo methods is prohibitively high for parametric studies. Furthermore,
it is not well suited for deep penetration studies. One can use semi-
empirical formulas to calculate finite heterogeneous buildup factors.
Because of the approximations made in their derivations, the applications
of these buildup factor formulas are limited in scope. It is generally
agreed that there is a lack of information about finite homogeneous
(single layer) and finite heterogeneous (multilayer) buildup factors. The
transmission matrix method is believed to be able to furnish some of this
formation.

The objective of this investigation is to apply the transmission
matrix method for calculations of single layer and multilayer buildup
factors. Shielding materials that will be used to form these layers are:
water, aluminum, iron, lead and uranium. For purpose of comparison with
other methods, the maximum thickness studied was 20 mean-free-path lengths.
For the cases of infinite homogeneous media, buildup factors calculated by
transmission matrix method were compared with the moments method results.
For the cases of finite multilayer buildup factors, comparisons of the
transmission matrix method results were made with those of the formulas

of Broder, Kitazume and Kalos and the method of analytical continuation.



Il. REVIEW OF LITERATURE

A. Methods of Evaluating Single Layer Gamma Ray Buildup Factors

A general survey of gamma ray buildup factors was treated by Trubey
"1] and Chilton [2]. Systematic evaluation of gamma ray buildup factors
was first done by Goldstein and Wilkins [3]. Using the moments method,
buildup factors for infinite, homogeneous medium of water, aluminum, iron,
tin, tungsten, lead and uranium were computed for point isotropic and plane
monodirectional sources. These buildup factors of infinite, homogeneous
medium have served as the benchmark values. Perkins 4] and Zerby [5]
calculated finite energy (fluence) and exposure buildup factors for water,
beryllium, aluminum, iron, tin and lead by using the Monte Carlo methods.
Berger and Dogget [6] calculated the ratio of finite to semi-infinite

ild
buildup factors, BE (X, X) -1

]

BE (X, =) =1
also by using the Monte Carlo method.
The simplest analytical approximation to Goldstein and Wilkins' re-
sult is by the empirical linear form [1]. The linear form is a very crude
approximation and limited to short distance only. Berger [7] formulated
an empirical, two-parameter exponential expression to fit Goldstein and
Wilkins' results. Chilton [8] obtained values of these two parameters.
The values of buildup factors from Berger form agree with Goldstein and
Wilkins' results within error limits of the original data out to 10 mean-
free-path lengths. Taylor [9] approximated Goldstein and Wilkins' results

by formulating an empirical expression with two exponential terms. The



accuracy of Taylor's form is not always as good as some other methods but
the relation is easy to apply to physical problems. Capo's polynomial
form [10] provides good agreement with Goldstein and Wilkins' results.
However, the nature of polynomial expression makes it difficult to be
applied to physical problems. All the empirical forms that are used to
approximate the Goldstein and Wilkins' results make the assumption that
the medium is infinite and homogeneous. There have not been established

benchmark values of buildup factors for shield media of finite thicknesses.

B. Methods of Evaluating Multilayer Gamma Ray Buildup Factors

Several crude estimates of multilayer buildup factors are known.
Among them are the methods of Rockwell of ''conversion into equivalent
layer thicknesses'' and ''dominance of high Z materials' [11]. Blizzard
[12] suggested the method of ''dominance of the last layer.' Goldstein [13]
proposed homogenization of the shielding layers by means of an homogenized
effective atomic number. A more refined formula has been given by Broder
"14] where the buildup at each layer is assumed to be the sum of individual
differences in buildup. Kitazume modified Broder's form by multiplying
each term in Broder's form by an exponentially decaying function.[15,16].
This exponentially decaying function describes the final saturating build-
up in the last layer. Kalos [17] devised a semiempirical formula to fit
his Monte Carlo calculation of water-lead two layer buildup factors.
Strictly speaking, Kalos' formula is valid only for a monodirectional
source through a water and lead combination of layer thickness not greater

than three mean-free-path lengths. Zumach [18] reasoned that the dose



at the shield interfacial boundary must be continuous and hence devised
the method of analytical continuation. This method gives results similar
to those of Broder's formula. All these methods are empirical or semi-
empirical in nature. There have been no calculations of multilayer build-

up factors without constraints in thickness and configuration.



I'1l. GENERAL THEORY

Transmission of gamma rays through a shielding medium can be con-
veniently described in terms of transmission without collision with the
electrons of the medium material, the unscattered flux, and transmission
in which there is at least one collision with an electron, the scattered
flux. The buildup factor is the ratio of the total transmitted flux

(scattered and unscattered) to the unscattered flux.

total transmitted flux a (X A)
B(X’AJZ) = =
unscattered flux ¢U(X,A)
3, (X A) + o (X, A) dg (X, 1) -
- . L !
(’Du(x, A) qu (X, A)

where B(X,A,Z) is the buildup factor at source-detector distance X, gamma
ray source wavelength A and shield medium atomic no. Z.

» (X5 A), @u(X,A) and ¢SCX,A) are respectively the total transmitted
flux, unscattered flux and scattered flux at source-detector distance X
and gamma ray source wavelength A.

In view of the fact that the unscattered flux for a particular shield
can be readily obtained, the task of computing buildup factors then becomes
one of finding the total transmitted flux.

Gamma flux can be measured in either '"energy fluence' (Mev/cmz),

'"exposure'' (Roentgen, R) or ''energy deposition' (Rad)*. The buildup

w
See Appendix A for definitions.



factors with gamma flux measured in these units are called respectively
“"energy fluence'', ''exposure'' and "'energy deposition'' buildup factors.
These buildup factors were formerly known as ''energy'!, ''dose'' and ''energy

absorption'' buildup factors.

A. Calculation of Unscattered Gamma Flux--Lambert's Law
For a monoenergetic, collimated narrow beam (or monoenergetic, broad
parallel rays in purely absorptive medium), the attentuation of gamma flux

in the medium can be described by Lambert's Law:
B, (% A) = $(0,A) exp(-ux) (2)
where @u(X,A) = unscattered flux at position X, source wavelength A.
®(0,A) = source flux at position 0, source wavelength A.

linear attenuation coefficient of the attenuation medium.

=
[}

x = thickness of the attentuation medium.

For multilayer shields, the unscattered flux after the nth layer is:

Il

a3

b, (X A) = (0, A) exp (=1, X; )

n
@ (0, A) exp(-izl “ixi) (3)

unscattered flux at nth layer, source wavelength .

where ¢u(xN,A)

linear attenuation coefficient of the ith layer

=
.
]

thickness of the ith layer

2
i

distance between source and the nth layer.

=y



The linear attenuation coefficients of the various media and source wave-
length are available in various publications, e.g. ref. "19]. Thus, the
calculation of unscattered flux of a certain shield is simply the appli-

cation of Equation (2) or Equation (3).

B. Calculation of Total Transmitted Gamma Flux--
Moments Method, Monte Carlo Method and Transmission Matrix Method
Insofar as buildup factor data are concerned, the calculation of
total transmitted flux have been done mainly by moments method and to a
lesser extent, by Monte Carlo methods. Both of these methods have inherent

and sometimes serious limitations.

l. Moments method [20]

The moments method can be briefly described by the following:

First, expand the angular variable of the directional flux by Legendre
polynomials and insert them back into the transport equation for photons.
The angular dependence of the gamma flux is now expressed in terms of
angular moments. Then expand the spatial variable of the gamma flux in a
power series and integrate the whole transport equation over all space.
Finally, one proceeds to solve for the gamma flux numerically by choosing
a certain number of angular and spatial moments.

Since the number of angular and spatial moments can be chosen to be
any number that is appropriate for the shield medium, the moments method
can handle any degree of anisotropy and thickness. However, in implementing
the process of integration over all space, the assumption of infinite

medium was made. Furthermore, the integration is not feasible unless the



cross section is spatially independent. Thus, one further assumes the
medium to be homogeneous. Consequently, the total transmitted flux ob-
tained by moments method is limited to single layer (i.e. homogeneous
medium), and it includes the effect of source backing and reflection beyond

the thickness of the layer.

2. Monte Carlo method

The Monte Carlo method is essentially an experiment using random
numbers and can be very flexible in terms of geometry. A certain number
of photons are emitted by the source and each one is traced through the
medium using stochastic methods for reactions and particle transport. The
total transmitted flux through the shield medium can accordingly be calcu-
lated by an aggregate of these random photon samplings. The shield
medium can be homogeneous or heterogeneous with almost any geometric
shape. In order to calculate the total transmitted flux within reasonable
uncertainty, it is necessary to sample a large number of photons (2000 and
upward). This requires large amounts of computer time and therefore is

exceedingly expensive for detailed parametric studies for buildup factors.

3. Transmission matrix method [21]

Consider a slab shield of finite thickness t with gamma ray incident
on and leaving from both sides. The gamma flux transport problem can be

described by the following expressions:

3, =T g +RY, (#)

ale
-~

T" ¥, + R 4 (5)

Y



where ®; and ¥, are respectively the incoming and outgoing flux on the

left face of the slab, and b9 and Y, are the outgoing and incoming flux
on the right; T] and T]x are respectively the transmission operators for

flux incident on the left and right face, and R, and R]w are the reflection

operators for flux incident on the left and right face.

Excluding photon-photon reactions, there exists a linear operator

H(t) such that

@ m
[,° ] = H(t) [W'] : 6)
v, :
B 3,
e L o e S
| ¥y
T el e
e g —p~

Figure 1. Slab shield

t, and ¥, can be solved from Equations (4) and (5) in terms of By and ¥,
From Equation (5), one obtains

e | o %
¥, =T (¥) = R3y) = -UR s + UY, . (7)

Substituting Equation (7) into Equation (4), one has the relation:

gy = Toy; + R (-U“R@' + U"wl) = (T - R UR) ) + R"U"Y] . (8)



where U =T , v =T "'. For isotropic materials, T = T  and R = R .

Combining Equations (7) and (8) into a matrix equation, one obtains:

""""""""""

4 T-R UR RU @
(9)

Comparing Equations (6) and (9), the H operator becomes

T - R?FU‘A\‘R R‘.«\‘U“n‘
(10)

-U"R u”

For a two-layer slab shield, consider the following figure:

——i —r—i e
¥ 8 %
——1— <= 2

Figure 2. Two-layer slab shield

One can write for the first layer:
3y % TR UCR R 4
A IO N U I UL I (1)

and the second layer:
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_ w % "
(%) - H(t,) (122 L2 0A (12)
YB Yz -UZ R2 U2 Wz

Combining Equations (11) and (12), one obtains:

Py I h
[3]=H(t)['1_[T‘R”R Ry (13)
Ys YI -U R U Yl

where T = T,[1 - R]*RZJ"IT] =T, nEO (RI“RZ)" Ty - (14)

R =Ry + Ty (1 - RyRy ) R,T,
. % il Lo n ]
=R+ T Ry T (Ry R, T, (15)
n=0
R IR L
il 2™ 2
iy n o 6
=T, T RRy) T, (16)
n=0
R™ =R, + TR, [1 = R,R, ] T,
% % = .n ve
=Ry * TR, nzo (RZR] ) T, (17)

The derivation for a n-layer slab shield follows the same logic as in the
two-layer case. From Equations (9) and (13) through (17), it is observed
that in order to obtain the total transmitted flux, one must find the

transmission and reflection matrix operators, T(t) and R(t). Detailed
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derivations for finding these two matrix operators are given in Appendix

A
5 2

B. With T(t) and R(t) obtained, the total transmitted flux (i.e. [‘*r ] for
2

Yn] for a n-layer shield) can be computed accordingly.
n

The transmission matrix method is an analytical process which does not

a single layer and [

assume the properties of infinite homogeneous medium.

C. Description of Buildup Factor Formulas
In this section, various analytical approximations used to describe

buildup factor data are examined.

l. Single layer buildup factors

The bulk of single layer buildup factors have been calculated by the
moments method [3,22]. These buildup factors are applicable to infinite
homogeneous medium only due to the inherent properties of moments method.
Goldstein and Wilkins [3] published an extensive table of these buildup
factors. Uncertainties claimed in these calculations were from 5 to 10
percent. Various efforts have been made to approximate these buildup
factors by analytical formulas. They, therefore, are for an infinite
homogeneous medium also. The four most commonly used formulas will be
described here.

(a) Linear form: B(pAuX) =1 + AI(A)uX (18)

where A = source wavelength

i = linear attenuation coefficient
X = source-detector distance
AI(A) = constant = B(p 1)-1 &

The linear form was established by reasoning that the scattered buildup,
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B(p,uX)=1, varies linearly with the distance. This form does not take into
account the saturation in buildup at deep penetrations. In general, the
linear form gives a higher value than the Goldstein and Wilkins' results
and is valid only at short distance, usually on the order of a mean-free-
path length. The value of the constant A](A), can be readily obtained by
setting the distance at one mean-free-path length.

(b) Berger form: B(AuX) =1+ C(A)uXeD(A)“x

(19)
where C(p) and D(pA) are the two parameters dependent on the source wave-
length.

Having observed the buildup factors displayed saturation as the dis-
tance increases, Berger [7] reasoned that the scattered buildup, B(A,uX)=1,
should follow an exponential increase. The Berger form results match well
with Goldstein and Wilkins' result over the range out to 10 mean-free-path
lengths. Because of its exponential expression, the Berger form is quite
conveniently applied to integration to form the plane isotropic source

kernel. Note that this formula reduces to unity when the distance is zero.

The two parameters, C(A) and D(pn), are available in ref. [8].

(c) Taylor form:

B(a,uX) = Ae X1 (MHX L pyep (A)UX (20)

where A, a](A) and az(A) are parameters to be determined for different
source wavelengths.

Taylor pointed out the spatial dependence of buildup factors can
be approximated by the sum of two exponential terms. In essence, this

form stated that the buildup is the sum of an exponential scattered term
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and the exponential of an unscattered term. Taylor's form also reduces to
unity at zero thickness but its accuracy is not always comparable to the
original Goldstein and Wilkins' data. However, because of its exponential
expression, this formula is frequently applied to integration for con-
version to plane isotropic source kernel. The value of the three parameters
are available in ref. [10].

(d) Polynomial form of Capo:

AN

B(A,uX) = £ B, (A)(ux)" (21)
n=o0

where Bn(A) are the polynomial coefficients.

Unlike the above three formulas, Capo's form utilized a 4-term
polynomial to approximate the Goldstein and Wilkins' data. This formula
is the most accurate one among the analytical approximation formulas. It
matches the Goldstein and Wilkins' buildup factor very closely over the
whole range of distances (out to 15 or 20 mfp) and for energies from 0.5
to 10 Meve However, it is rather difficult to apply this form to inte-
gration to form the plane source kernel. The complete set of polynomial
coefficients are given in ref. [9].

Monte Carlo methods were used in calculating buildup factors of water,
beryllium, aluminum, iron, antimony and lead of only a few mean-free-path
lengths because of the extensive computer time this method requires. No
complete tabulation of buildup factors as a function of source energy,
thickness and materials have been done.

By applying the algorithm of the transmission matrix method, syste-

matic compilation of buildup factors was done for water, aluminum, iron,



lead and uranium. The transmission matrix method can handle both the
infinite medium and finite slab geometries. With a slight modification,
it can also treat the geometric configurations of semi-infinite medium
with source backing and semi-infinite medium with reflection. Comparison
with Goldstein and Wilkins' result was made for the infinite medium

calculations.

NOUIBNAN

Source q— X —»() Detector

NN

Figure 3. Infinite Medium

N\

Source *-‘— X -—-—O Detector

NN\

Figure 4. Finite Slab




\\\\\\

Figure 5. Semi=infinite medium with source backing

NN
N

Figure 6. Semi-infinite medium with reflection
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2. Multilayer buildup factors

Because of the inability of the moments method to treat analytically
gamma transport at the interfacial boundary of a multilayer shield, the
development of mul tilayer buildup factors are semiempirical at best. Among
the various proposals, the following four are commonly used:

(a) Broder's Formula Based on shielding experiments using a point

isotropic source of cobalt=60 and laminated layers of polyethylene,

t al. [14] stated that the multilayer

aluminum, iron and lead, Broder

buildup factors are governed by:

N
B(z X)= 2 B (% X) - = B (% X) (22)

where )(i = thickness of the i-th layer in mean-free-path.

For a 2-layer system, N = 2, the expression becomes:
B(X, + Xy) = By (X, + X,) + [B,(X;) = B,(X)] « (23)
For a 3-layer system, N = 3, the expression becomes:
B(X, + X, + x3) = 83(X] Xt X))+ (B, (x,) - BZ(X])]

+ [By (X + X)) - By (X; + %) . (24)

In essence, the Broder's Formula stated that the total buildup factor
of a multilayer system is the sum of the individual differences in the
buildup. This relation showed good agreement with experimental results for

heavy-light systems (e.g., lead followed by aluminum), but was found to be

inadequate for light-heavy systems (e.g., water followed by lead). It



19

should be noted that the shielding experiments were not performed with a
monoenergetic source. Total experimental error claimed was + 10% Appli-
cation of Broder's formula, therefore, can only be used as a rule-of-thumb
estimation.

(b) Kitazume's formula Based on the results of the shielding ex-

periments using a plane source of cobalt-60 (activity: 10 Ci) and lami-
nated layers of water, iron and lead, Kitazume modified Broder's

formula by multiplying each term by an exponentially decaying function,
exp(«zxr), where Xr is the distance to the end point measured in mean-free-
path [15,16].

Thus, for a N-layer system, Kitazume's formula is:

N N n N N n=1
B(z X)= % B, (% X)exp(xx X)-2B (T X)
i=l n=1 =1 r=rt+l n=2 i=1
N
exp( & X)) (25)
r=n

For a two-layer system, N = 2, the expression becomes:
B(X; + X)) = By (X} + X,) + [B;(X;) - B,(X;)] exp(-aX,) (26)
For a three-layer system, N = 3, the expression becomes:
+ = -
BO + %+ X = B Oy % 35 + BpJ + B 4 )-8, ()

exp[-oz(x2 + x3)] + [BZ(XI * ) = B3(Xl + Xz)] exp[ﬂx(x3)] (27)

Equation (26) is for low energy (1-2 Mev) gamma. For high energy gamma



20

(E > 2 Mev), the following version gives better results:
B(X, + X)) = B (X + X)) + [B (X)) = B, (X, )] exp(<aX,)
+ AB, (X, + X)) = B,(X,)] exp(-B/X,) (28)

where A, @ and B are determined experimentally.

The introduction of the exponential term is designed to take into
account the final saturation buildup in the last layer. Hence, the de-
termination of @ is critical. This can be done experimentally or by direct
numerical integration. |In general, @ is between 0 and 3. For heavy-light
combinations, Kitazume form reduces to Broder form by settinga = 0. For
light-heavy combinations, @ ~ 3. Kitazume form suffers also from un-
certainties due to experimental errors. Deviations of Kitazume's formula
from experimental values were + 5-15%. Thus, the results of Kitazume's
formula can only be used as an approximation to the mul tilayer buildup
factorse.

(¢) Kalos' formula for lead and water shield Gamma transport

studies of 3 mfp layers of water and lead were done by Kalos using Monte
Carlo techniques. Buildup factors were obtained for these systems and the
following semi-empirical formulas were devised to fit the results:
For lead followed by water; 0.5 Mev < E < 10 Mev;
BI(X])-I

B(X; + X)) = By(X) + —;——(m— [B, (X, + X,)=B, (X,)] (29)
259

For water followed by lead and 0.5 Mev < E < 10 Mev
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B(X, + X)) = s lig) # [~ axp(-1.7 1) 4 UL (1oexp (o))
‘ B, (X))-1 (/1)
[132(xl + xz) - BZ(XZ)] (30)

where (,uc/,ut)n is the ratio of Compton scattering to total cross section
in the n-th material.

Efforts have been made [16,17] to extend Kalos' formula to other
materials and over 3 mfp in layer thickness. In general, the deviation
increases as layer thickness increases beyond 3 mfp. Application of Kalos'
formula is therefore limited to heavy-light thin shield systems.

(d) The method of ''analytical continuation' The method of '‘analy-

tical continuation'' was proposed by Zumach based on the following two
conditions:
For a N-layer system with individual layer thickness X], X2, X3.u.XN,
(i) The dose at the n-th to mtl1=-th interfacial boundary must
be continuous.
(ii) The multilayer buildup factor at a thick layer approaches

the material buildup of this layer.

B(X) =B, (X) for X, 6 > 1

N( N
where B(X) is the multilayer buildup factor with total thickness X mfp.

BN(X) is the material buildup factor for the N-th layer with

thickness X mfp

XN is the thickness of the N-th layer.
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Consider that the first layer buildup factor, BI(XI) is known, then one

can select a mfp Y] from the second layer such that:
= - 1
B, (%) = B, (¥;) (31)

The two-layer buildup factor at the second layer is therefore:

B(X;+ X,) = By (Y, + X)) - (32)
Carrying this procedure out to the N-th layer, one obtains:

+ X) (33)

BLZ X)) =By My * Xy

(Y
i=1 N

It is observed that the above procedures are justified if and only if the
energy spectrum and angular dependence does not change appreciably while
transversing from one layer to the adjacent one. This restriction is
evidently violated for a heavy-light combination. Thus, the method of
analytical continuation is limited to systems consisting of layers of
similar attenuating and scattering propertieso

The transmission matrix method is one of the analytical methods that
can compute multilayer buildup factors with no constraints on shield
materials and layer thickness. The procedure is similar to that of single
layer buildup factors as described by Appendix B. When Equations (3) and
(14) - (17) were solved, the buildup factors were automatically obtained
by taking the ratio of total transmitted flux to unscattered flux.

The results from the transmission matrix method will be discussed in

the next section.
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IV. RESULTS AND DISCUSSION

A. Single Layer Buildup Factor Studies

The transmission matrix method was employed to compute single layer
bui ldup factors of water, aluminum, iron, lead and uranium for infinite
medium and finite slab geometry. |t was observed that the infinite medium
buildup factors agreed quite well with the Goldstein and Wilkins result.
The comparisons of these buildup factors are shown in Figures 7 - 11l.
Because of the close agreements displayed in the comparisons, the tech-
nique of buildup factor evaluation by transmission matrix method is be-
lieved to be correct within the context of this investigation.

For light (low Z) materials, the effects of source backing and re-
flection beyond finite thicknesses cause the infinite medium buildup fac-
tors to be considerably higher than those of finite slabs. The finite
slab buildup factors are shown as the triangular points in Figures 7 = 11,
As the atomic number of the material increases, the difference between
infinite medium and finite slab decreases. For lead and uranium, the
effects of source backing and reflection beyond finite thickness are almost

negligible.

B. Multilayer Buildup Factor Studies
The transmission matrix method was employed to compute multilayer
buildup factors for twenty-six different two-layer and three-layer systems.
Finite slab energy fluence buildup factors obtained from part A were used
as input data to compute multilayer buildup factors by Broder's, Ki tazume's,

Kalos' formulas and the method of analytical continuation. Comparisons
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between the multilayer buildup factors computed by the transmission matrix
method and those by the four semiempirical forms are shown in Figures
12 = 57. In the figures were displayed varying degrees of agreement be-
tween the transmission matrix method result and those of the four semi-
empirical formulas. These differences will be discussed.

The various two-layer combinations can be classified into three
broad categories:

1) Light material followed by heavy material, e.g., water followed
by lead, iron followed by uranium, etc.

2) Heavy material followed by light material, e.g., lead followed
by aluminum, uranium followed by water, etc.

3) Two layers of materials of similar properties such as the lead
and uranium combinations.

The results obtained from this investigation will be discussed

according to the above categories.

. Light-heavy systems

It is apparent from Figures 12 - 51 that the formula of Broder is
inadequate to describe a light-heavy system. The reason is that Broder's
formula does not take into account the final saturating buildup in the
last lTayer. In a light-heavy combination, this final saturating buildup
in the last layer is dominated by the buildup of the last layer alone until
the last layer thickness becomes relatively thin compared to the system
thickness (approximately less than 5 mfp in a 20 mfp system and less than

I mfp in a 6 mfp system). However, the Broder's form describes the buildup



Figure 12. Energy fluence buildup factor of a 20 mfp water-aluminum shield
for a 1 Mev point isotropic source

Figures 12-57 are graphs of energy fluence buildup factor, BE,
versus first layer thickness of the multilayer slab
shield systems for a 1 Mev point isotropic source.
The media that compose the multilayer shields are stated
in orders of appearances. For example, a uranium-water
shield is a two-layer shield system with uranium as the
first layer followed by water as the second layer. The
total thicknesses of the multilayer shield systems are
fixed at six or twenty mfp. The following abbreviations
are used in the figures:

Transmission Matrix Method Calculations: TMMC
Broder's Formula Calculations: BFC

Kitazume's Formula Calculations: KFC

Kalos' Formula Calculations: KLFC

Method of Analytical Continuation Calculations: MACC
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at each layer as the sum of individual difference in the buildup. Conse-
quently, the buildup factors calculated by Broder's form are shown in-
creasing almost linearly as the first (light) layer increases in thick-
ness. In the actual cases, the buildup factors remain relatively constant
until the last layer becomes relatively thin compared to the system thick-
ness. Deviations of Broder's form due to this cause are observed in both

the 20 mfp and the 6 mfp cases.

It is observed that the buildup factors calculated by the Kitazume
form are generally in good agreement with those of the transmission matrix
method. The formula of Kitazume approximates the ''dominance by the last
layer'' effect by multiplying an exponential term, exp(«xxz), to the
Broder's form. [Equations (26) and (23)]. When the last (heavy) layer
is relatively thick, the exponential term is zero for all practical pur-
poses and hence the two-layer buildup factor of a light-heavy system is
essentially the buildup factor of the last layer. As the last layer be-
comes relatively thin, the exponential function increases rapidly and the
results resemble the transmission matrix method results. Mathematically
speaking, for every transmission matrix method value of buildup factors,
one can always fit an @ to get the identical buildup factor by Kitazume
form. However, very little information on @ is available. The value of
@ in this investigation is chosen iteratively such that one single value
of @ would be sufficient and suitable for a two-layer system of fixed total
thickness. In general, @ = 1.0 [15] would generate close agreement by the

Kitazume form for a light-heavy system. Such close agreement between the
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Kitazume form and the transmission matrix methods are observed in both the
20 mfp and 6 mfp cases.

Kalos form [see Equation (30)] was extended to apply to cases other
than the water-lead combination and total thickness of more than & mfp.
Generally speaking, the deviations of the results of Kalos' form were less
in the 6 mfp cases than in the 20 mfp cases. For the particular cases of
water followed by lead and water followed by uranium, the results from
Kalos form showed very good agreement with those of the transmission matrix
method. Application of Kalos form to other light-heavy combinations
would result in a lower buildup value than the transmission matrix method.

For such cases, the formula of Kitazume appeared to be superior.

The method of analytical continuation was applied to all light-heavy
combinations except those involving lead and uranium as the second layer.
The reason being that the first procedure in the method of analytical
continuation is to convert the first layer into a hypothetical layer of
the second medium giving an equivalent buildup factor. To achieve this,
one would need to extrapolate the buildup value of lead and uranium well
over 20 mfp where data would not have been calculated. In géneral, the
results of the method of analytical continuation show poor agreement with
the transmission matrix method results. The deviation of this method from
the transmission matrix method is most notable when the differences between
the two layers are most acute. This is so because the more drastic the
change in energy spectrum and angular distribution that occurs at the
interfacial boundary, the larger the introduced error. Deviations between

the results of the method of analytical continuation and those of the
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transmission matrix method are observed in both the 20 mfp and the & mfp

cases.

2. Heavy-light systems

For heavy-light combinations, the effect of ''dominance by the last
layer' is much less than the light-heavy combinations. In fact, for the
cases where the first layer is lead or uranium, the buildup factor would
undergo an almost linear decrease as the first layer increases in thick-
ness. For such cases of linear decrease, the Broder form shows good agree-
ment with the transmission matrix method for both the 20 mfp and the 6 mfp
systems. For the cases where the first layer is iron or aluminum, the de-

crease of buildup is no longer linear and the Broder form is inadequate.

In the same manner as in the light-heavy systems, the formula of
Kitazume describes the decrease of the buildup factors of the heavy-light
systems by an exponential function, exp(ﬁzxz). If the first layer is
ei ther lead or uranium, @ is automatically set equal to zero since the
buildup factor calculated under such condition is the closest one can get
to the transmission matrix method value. This would reduce the Kitazume
form into Broder form. When the first layer is either aluminum or iron,
the Kitazume form approximates the transmission matrix method result just
as in the previous cases. In general, the Kitazume form can describe the
heavy-light systems adequately by choosing the best fit o value.

Except in the cases where lead or uranium is the first layer material,
Kalos form [Equation (29)] is inadequate to describe the bui ldup behavior

of a heavy-light combination. For the cases where the total thickness of
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the systems are 20 mfp, the deviations between the Kalos form and the trans-
mission matrix method are especially apparent. The formula of Kalos is
quite applicable to two-layer shields of total thickness less than 6 mfp
and with either lead or uranium as the first layer.

For heavy-light systems, the method of analytical continuation
generally shows good agreement with the transmission matrix method. It
should be pointed out that there probably is error introduced when one
reads a hypothetical thickness off the buildup factor graph. This error
of reading off the graph may counter or compound the error due to the

energy spectrum and angular distribution change at the interfacial boundary.

3. The lead and uranium combinations

Since both lead (Z=82) and uranium (Z=92) are heavy materials, their
gamma energy spectra and angular distributions are similar in nature. The
buildup factor undergoes relatively little change in such systems and all
four formulas appear to describe the buildup behavior well. No distinction
can be made in pinpointing which form is more accurate for the systems.

The various three-layer systems can be classified into two categories:

(1) Light material slab sandwiched in a heavy medium of fixed total
thickness, e.g., the iron-water-iron system, etc.

(2) Heavy material slab sandwiched in a light medium of fixed total
thickness, e.g., the water-lead-water system, etc.

The three-layer buildup factors evaluated by the transmission matrix
method were compared with those of the formulas of Broder, Kitazume and

analytical continuation. Since Kalos form was devised for a two-layer
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system, it was not used here for comparison.

The comparisons of three-layer buildup factors between the trans-
mission matrix method and the three semi-empirical forms were shown in
Figures 52 - 57. In general, Kitazume form showed the least deviation
from the transmission matrix method. For systems of water slab moving in
aluminum or iron (and reversed) the deviations of Broder form and the
method of analytical continuation from the transmission matrix method were
within reasonable limit. However, for the system of water-lead-water,
Broder form was far from being accurate and the method of analytical
continuation was inapplicable. The reason behind the inapplicability of
the method of analytical continuation in this instance is the same as in

the two-layer case where lead is the second layer (see page 77).
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V. CONCLUSIONS

It has been shown that the transmission matrix method can be used to
generate buildup factors systematically as a function of source-detector
distance, source wavelength and shielding material. Through comparisons
with the Goldstein and Wilkins' results and considerations of the un-
certainty in the original data, it is agreed that the transmission matrix
method is both accurate and suitable for parametric studies of buildup
factors.

Close agreement between the Goldstein and Wilkins' report and the
transmission matrix method calculations for single layer materials of
infinite medium was observed. Since the technique of transmission matrix
method used to calculate the infinite buildup factors applied to the finite
buildup factors in the same way, it is concluded that the finite single
layer buildup factors evaluated by the transmission matrix method are also
accurate within the uncertainty limit.

Due to the fact that there is no established benchmark value for
multilayer buildup factors, no absolute statement can be made regarding
the relative accuracies of the formulas of Broder, Kitazume, Kalos and the
method of analytical continuation. It is observed, however, that the re-
sults of all four formulas deviate somewhat from the transmission matrix
method calculations. For light-heavy systems, Kitazume form offers the
least deviations from the transmission matrix method. For heavy-light

systems, least deviations is best achieved by using a combination of Broder
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and Kitazume form. For three-layer systems, Kitazume form shows the
least deviations from the transmission matrix method calculations among

the three applicable formulas.
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VIil. APPENDIX A

Definitions:
A roentgen is defined as the quantity of X or gamma radiation
such that the associated corpuscular emission per 0.001293 gm
of air produces ions carrying 1 e.s.u. of electricity of either
sign. This is equivalent to 2.58 x IO-Q coulomb/kg.

1 R=1 e.s.u./0.001293 gm of air = 2.58 x Il.'J-I+ coulomb/kg.

A rad is defined as the quantity of ionization radiation that
imparted 100 erg of energy to the matter in a volume element

of mass 1 gm.

1 rad = 100 erg/g = 10-2 joule/kg
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VIiil. APPENDIX B

Transmission Matrix Theory [21] :
Consider n laminated layers of the same material of infinitesimal
thickness tys tys eco t , oOne obtains
: 1
H(t) = H(tI + oty + ”"tn) = H(tn) H(tn_]).“H(t]) = g H(ti)n. (81)

i=n

CH(t) = e Wt < SR . | 3 (82)

where

The transmission matrix operator, T(t) and reflection operator, R(t) can

be expanded as follows:

2
T(t)=e-at= | -ou;+—mL + coo (B3)
2!
R(t) =] - e B Bt - ‘(&L + oo ° (Bl“)

Recall from Equation (10), one has the relation:

-1 -1
[ T-RTR RT

-7 1R ik

H(t) (B5)

Substituting Equations (B3) and (B4) into Equation (B5), one obtains
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a =B
H(t) = 1 - [B _a] t + cvooe (B6)

Equating Equations (B2) and (B6), one finds

w=[¢ B, (87)

For the purpose of computational convenience it is necessary to diagona-
lize the matrix W To achieve diagonalization, first matrix W is trans-

formed to W by :

] (88)

on
Ou™

where
P=[I |]=2P"]
I =1
L=0+B
6=Ol"B o

The second step is the solution of the eigenvalue problem of W, Consider:

WZ = Zp (B9)
z z A 8

where 7 = | 1 12 ] A= H |/
Ly I 8 Moo

From Equation (B9), one obtains the following four equations:



€1 = 211 My

CZyp = L33 Moo
A = Loy Ny

Alig = Ly Myy
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(810)

(B11)

(812)

(813)

It is observed from Equations (B10) and (B13) that if X is column eigen-

vector of the matrix A, where A = (s, then it follows:

2y 5 Zyy = X
I e
21 = & X1

Z.. = -A X!
22— 'ﬁ F

where A]] =T, A22 = =T o

Equation (B9), one obtains:

c X X
3 1]

SXT| -axp

(B14)
(15)

(B16)

Substituting Equation (Bl4) - (B16) into

X X r e
sl k] 1T g o 1 (817)

Taking the transpose of Equation (B9), one obtains a similar relation

for Y, the row eigenvector of matrix A.

LTS
UW= U
where
U U
sop o Yz
Uy Yy

(B18)
(819)
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From Equation (B19), one obtains the following four equations:

Uiz 3= My Yy (820)
Upp A = Ngp Uy (821)
Uy §= Ay Yyo (B22)
U1 & = Ay Ypy (823)

From Equation (B20) - (B23), it can be shown that the following is true:

=
Uy, =T Y¢ (825)
U, =T Y (826)

Having had the column eigenvector X, and row eigenvector, Y, defined,

and choosing YX = 1, the diagonalization of matrix W proceeds as follows:

-1
Y % 8 X X
1t (1 (e27)

uw z = [ i "
y =T Ye 8 8 s X =8 XTI

Substituting Equation (B17) into (B27), the above equation becomes

— Y T Y¢ X X r e
Wz = [ g I K a1 1 ]
¥ =P N §XT =5 XI" 8 -r
1 @ r e
=20qg 1 [g.1 - (B28)

Substituting Equation (B8) into (B27), one obtains the following:
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sl = -] =i}
Y+ T Y Y-T'Y a - X + AXT X = AXT
1 v C] [ 10 . o) (829)

]
4 L % .
=T Yt Y+1"]Yg B = X = BXT X + =Xr

Equating Equations (B28) and (B29), the diagonalization relation of matrix

Wis:
-1 -1 -1 -1
{ JEF R Yo7 vg] [cx -5] [x+5xr X=§ X
+ [ ) § y
¥ Y-r"vg Y+r'vg B o X - 6XT | xebXT!
r e
= [ ] (B30)
€ -T
Let o] w
C+=Y+T Y, B+=X+§XT
Equation (B30) becomes:
1 c+ C- B+ B- r o
m [ 1 W ] =1 ] (831)
C- C+ B- B+ 8 -r

Having diagonalized the matrix W, the next step is to relate Equation (B31)
to the matrix H(t) and find the transmission and reflection matrix
operators, T(t) and R(t), respectively. From Equation (B2), one derives

the following relations:



9l

H(t) = e-wt, if W can be diagonalized to SNS-], then:

-1

w
He) = §7) o WS L o (B32)

Note that Equation (B31) can be substituted into Equation (B32) by setting:

c+ C- o B+ B-

s=1I ] LT ) (833)
c- C+ B~ B+
-1 bv = B+ B-
g et g exp - & [ I wl } it
C- Cc+ B~ B+
roe e Mt o
=exp - [ ] ¢ =1 ¢ ] (B34)
e -T = eA

Substituting Equations (B33) and (B34) into Equation (B32), one obtains
the relation:
B+ B=- e 8 t+ C-

H(t)=ﬁ(a R ) j
- e cC- C+

1 B g At G, + B g o C_ B, e Nt ¢ 4+ B gt c
wey =Lt S BN T
B_e M +p el i At
L A . © c_ B_ e c_+ B+ e C+

Equating Equations (B35) and (B5), the expression of T(t) and R(t) are
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found as follows:

At ooy -l (B36)

T(t) =u4B_e™c_+8, e

b6, e M+ e, () (B37)

R(t)

With T(t) and R(t) calculated, the total transmitted gamma flux can be
computed according to Equation (9). The following procedures summarize
the algorithm of transmission matrix mathod in calculating buildup
factors:

(1) Input of data in photoelectric and pair production cross section,
atomic number and density, to form the matrices @ and Be Matrices (, §
and A were subsequently formed.

(2) Solution of the eignvalue problems to find the column and row
eignvectors, X and Y, and the eignvalue " of the matrix A.

(3) Compute the values of C_and B, from X, Y, " obtained in step (2).

(4) Compute the transmissiO; and rzflection matrix operator, T(t) and
R(t), and finally the total transmitted gamma flux spectrum and the build-
up factorse.

It should be noted that steps (1) through (3) are independent on the
geometric configuration and thickness of the medium. They are only re-
lated to the cross sections of the medium. Thus the first three steps need
to be done only once for each material and could be stored for future
usage. This unique feature of transmission matrix method algorithm makes

it particularly suited for parametric studies in buildup factors.
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